import torch
from torch.nn import functional
from matplotlib import pyplot as plt
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(n_feature, n_hidden)
self.predict = torch.nn.Linear(n_hidden, n_output)
def forward(self, x):
x = functional.relu(self.hidden(x))
x = self.predict(x)
return x
net = Net(n_feature=1, n_hidden=10, n_output=1)
print(net)
optimizer = torch.optim.SGD(net.parameters(), lr=0.2)
loss_func = torch.nn.MSELoss()
# data
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = x.pow(2) + 0.2*torch.rand(x.size())
plt.figure(1, figsize=(8, 5))
plt.subplot(111)
plt.scatter(x.numpy(), y.numpy())
# plt.show()
plt.ion()
plt.show()
for t in range(500):
prediction = net(x)
loss = loss_func(prediction, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# plot
if t % 5 == 0:
plt.cla()
plt.scatter(x, y)
plt.plot(x, prediction.data.numpy())
plt.text(0.5, 0, f'loss={loss.data.numpy()}', fontdict={'size': 20, 'color': 'red'})
plt.pause(0.1)