import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
if __name__ == '__main__':
'''
数据为:
origin_num,real_num
1,1
2,2
3,3
4,4
5,5
6,6
7,7
8,8
9,9
10,10
11,11
12,12
13,13
14,14
15,15
'''
file = pd.read_csv(r'D:\Python\myself_sync\src\test\num_arry.csv')
X = file.to_numpy() # X为一个两列多行的数据,自变量
y = file['real_num'].to_numpy() # y为结果数据,此处为一列多行结果
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
lr_model = LinearRegression()
lr_model.fit(X_train, y_train)
predict_data = lr_model.predict(X_test)
accuracy = np.mean(predict_data == y_test)
print(accuracy)
# ----------保存模型到文件---------
import pickle
with open('line_model_1.skm','wb') as f:
pickle.dump(lr_model,f)
f.close()
# 加载模型并且使用模型
import pickle
with open('line_model_1.skm','rb') as f:
crf2 = pickle.load(f)
f.close()
predict_data = crf2.predict(X_test)